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Abstract—In recent years, a massive amount of time-stamped
sensor data has been generated and collected by many Internet
of Things (IoT) applications, such as advanced automobiles and
health care devices. Given such a large collection of complex
sensor sequences, which consists of multiple attributes (e.g.,
sensor, user, timestamp), how can we automatically find important
dynamic time-series patterns and the points of variation? How
can we summarize all the complex sensor sequences, and achieve
a meaningful segmentation? Also, can we see any hidden user-
specific differences and outliers?

In this paper we present CUBEMARKER, an efficient and effec-
tive method for capturing such multi-aspect features in sensor
sequences. CUBEMARKER performs multi-way summarization
for all attributes, namely, sensors, users, and time, and specifically
it extracts multi-aspect features, such as important time-series
patterns (i.e., time-aspect features) and hidden groups of users
(i.e., user-aspect features), in complex sensor sequences.

Our proposed method has the following advantages: (a) It is
effective: it extracts multi-aspect features from complex sensor
sequences and enables the efficient and effective analysis of
complicated datasets; (b) It is automatic: it requires no prior
training and no parameter tuning; (c) It is scalable: our method
is carefully designed to be linear as regards dataset size and
applicable to a large number of sensor sequences.

Extensive experiments on real datasets show that CUBE-
MARKER is effective in that it can capture meaningful pat-
terns for various real-world datasets, such as those obtained
from smart factories, human activities, and automobiles. CUBE-
MARKER consistently outperforms the best state-of-the-art meth-
ods in terms of both accuracy and execution speed.

Index Terms—Time series, IoT sensors, Tensor analysis, Auto-
matic mining

I. INTRODUCTION

Today, thanks to the rapid spread of small, inexpensive but

high performance sensors, a massive quantity of time-stamped

sensor data is generated and collected by many Internet of

Things (IoT) applications, such as advanced automobiles (e.g.,

self-driving cars), health care devices (e.g., fitness trackers)

and smart factories (e.g., Industry 4.0). In most cases, these

IoT data consist of multiple sensor readings obtained from

multiple users (or drivers/facilities), at every time point, that is,

each entry is composed of the form (sensor, user, timestamp).

In this paper, we shall refer to such settings as complex sensor

sequences. In practice, real complex sensor sequences contain

various types of distinct, dynamic time-series patterns of

different durations, and these patterns usually appear multiple

times. Here, we shall refer to such a distinct time-series

pattern as a “regime”. Our goal is to find important dynamic
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time-series patterns (i.e., regimes) and achieve multi-aspect

summarization and segmentation of all the complex sensor

sequences for three attributes, namely, sensors, users and time.

For example, assume that we have the automobile sensor

sequences, e.g., velocity, longitudinal and lateral acceleration

sensor data, obtained by multiple drivers. So, how can we find

meaningful patterns/regimes with respect to three aspects: sen-

sor, user and time? Specifically, we would like to answer the

following questions: Can we see any basic driving behavior,

e.g., speeding up and turning? Can we find any hidden groups

of users, e.g., beginners and professionals? Is there any distinct

driver-specific behavior, e.g., slowing down very carefully at

an intersection?

In this paper, we present CUBEMARKER, which answers

all of the above questions, and provides a good summary of

large collections of complex sensor sequences. Intuitively, the

problem we wish to solve is as follows:

Informal Problem 1: Given a large collection of triplets

(sensor, user, time), that is X ∈ R
d×w×n, which consists

of d sensors in w users of duration n, Find a compact

description of X that summarizes all the complex sensor

sequences with respect to three aspects (i.e., sensor, user and

time), automatically, in a scalable fashion.

Preview of our results. Figure 1 shows some of our discov-

eries for automobile sensor data. The data were obtained from

d = 3 sensors: velocity (blue line), longitudinal (yellow line)

and lateral (red line) acceleration, for w = 32 users/drivers

and n = 5200 time points. The experiments were performed

by driving the same route (please see Figure 1 (b)). Given a

set of complex automobile sensor sequences, CUBEMARKER

automatically and efficiently detects important dynamic pat-

terns, with respect to three aspects: sensor, user and time.

Specifically, Figure 1 (a) shows the multi-aspect segmentation

results (i.e., a set of colored segments) and the six typical time-

series patterns (i.e., regimes: θ1, · · · ,θ6). Also, Figure 1 (b)

shows representative driving behavior plotted on a map. Here,

each color represents the assigned regime label, e.g., orange

corresponds to regime θ6: “slow speed”, and blue corresponds

to regime θ2: “turning right”.

Figure 1 (c) shows an enlarged, individual summarization

for three drivers A, B, and C at three different locations,

namely, (i) narrow road, (ii) intersection, and (iii) wide, multi-

lane road (please also see the red rectangles in Figure 1 (a)

and (b)). Here, the left columns show the original d = 3
dimensional sensor sequences and their segmentation results

for three drivers, and the right columns show snapshots of the

dashboard cameras of three drivers at each location.



(a) Multi-aspect segmentation (b) Representative driving

and summarization behavior on a map
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Fig. 1. Multi-aspect mining of CUBEMARKER for automobile sensor data.
Given a set of complex sensor sequences consisting of sensor × user (driver)

× timestamp, it detects various important patterns and user/driver-specific,
individual behavior, automatically and quickly. Specifically, (a) the algorithm
provides a multi-aspect segmentation result (i.e., a set of colored segments),
and also, estimates six typical time-series patterns (i.e., regimes: θ, · · · , θ6). It
also shows (b) the representative driving behavior plotted on a map, and (c) an
enlarged, individual summarization. Here, each colored segment corresponds
to a specific driving pattern/regime, e.g., the orange segments correspond to
regime θ6: “slow speed”, the blue segments correspond to regime θ2: “turning
right”, and the green segments correspond to regime θ4: “speeding up”. Please
also see the text for more details.

Most importantly, CUBEMARKER can capture typical and

basic time-series patterns/regimes, and various types of dis-

tinct driver-specific behavior, automatically and simultane-

ously. For example, in Figure 1 (c-i), the algorithm identifies

similar driving behavior for three drivers. Here, the orange

segments correspond to regime θ6: “slow speed”, which means

that all the drivers pay attention to their surroundings on a

narrow road (e.g., pedestrians and parked cars).

In addition, the assignment of regime labels made it possible

to identify the basic driving procedures at each location. In

Figure 1 (c-ii), CUBEMARKER automatically identifies indi-

vidual driving behavior when turning at an intersection. Here,

drivers B and C fall into regimes θ6 → θ2 → θ4 (i.e., slow

speed → turning right → speeding up), while driver A falls

into regimes θ6 → θ2 → θ6 (i.e., slow speed → turning right

→ slow speed). Similarly, in Figure 1 (c-iii), the algorithm

successfully identifies driver-specific patterns on a wide, multi-

lane road, where drivers A and B are assigned to regime

θ3: “high speed”, while driver C is assigned to regime θ3:

“middle speed” (this is because there is a preceding car, shown

as a cyan rectangle in the figure). Most importantly, these

driving patterns/regimes are unknown in advance, and thus the

algorithm should recognize the groups of segments, each of

whose pattern has similar characteristics. Also note that our

method automatically determines the discontinuity/transition
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points of each segment.

Contributions. The main contribution of this work is the con-

cept and design of CUBEMARKER, which has the following

desirable properties:

1) Effective: It operates on large collections of complex

sensor sequences and summarizes them with respect to

three aspects (i.e., sensor, user, time), which enables

flexible segmentation and representation. Also, we apply

CUBEMARKER to various types of complex sensor se-

quences including automobiles, smart factories and health

care activities.

2) Automatic: It is fully automatic, and so requires no prior

training and no parameter tuning.

3) Scalable: It is carefully designed to be linear as regards

input size, and thus is applicable to very large complex

sensor sequences.

II. RELATED WORK

Recently significant progress has been made on understand-

ing the theoretical issues surrounding mining time-series [1]–

[7]. Traditional approaches applied to time-series data mining

include similarity search [8], auto-regression (AR), linear

dynamical systems (LDS) and variants [9]–[11].

Table I illustrates the relative advantages of our method.

Only CUBEMARKER meets all the requirements. Li et al. [11]

developed DynaMMo, which is a scalable algorithm for time-

evolving sequences with missing values. DynaMMo is based

on a linear dynamical system, and has the ability to segment

a data sequence. However, it cannot find a group of similar

patterns (i.e., regimes).

Tensors are widely used in a variety of areas, such as

health care [12]–[14] and social media [15]–[20]. Kolda et

al. provided a powerful tool for matrix sketching methods in

the context of CANDECOMP/PARAFAC [21], but it is inca-

pable of discovering important regimes and requires parameter

tuning.

In work on learning probabilistic models, hidden Markov

models (HMMs) have been used in various research areas

[22]–[24] including speech recognition [25] and biological

data analysis [23]. Wang et al. [26] improved on the work de-

scribed in [27], and presented a pattern-based hidden Markov

model (pHMM). The pHMM is a new dynamical model

for time-series segmentation and clustering, and provides a



piecewise linear representation. However, the above model

requires user-defined parameter and model structure settings.

Furthermore, it does not focus on scalability.

Recently, Hallac et al. [28] proposed Toeplitz inverse

covariance-based clustering (TICC), which characterizes the

interdependence of different observations using a Markov

random field. AutoPlait [29] focuses on the clustering of time-

series patterns for multivariate time-series, however, they are

not intended to cluster similar patterns extending to other users

(i.e., user-aspect patterns).

In short, none of the existing methods focuses specifically

on the automatic and multi-aspect mining of time-evolving

dynamics in complex sensor sequences.

III. PROBLEM FORMULATION

In this section, we formally define related concepts and the

problem we are trying to solve. Consider that we receive time-

stamped data entries of the form (sensor, user, time). We then

have a collection of entries with d unique sensors and w unique

users, for n time points. It is convenient to treat our sensor

sequences as a 3rd-order tensor, i.e., X ∈ R
d×w×n, and we

refer to it as a time-series tensor.

We want to convert a given X into a set of m non-

overlapping segments S = {s1, . . . , sm} where si consists

of the start position ts, end position te and user j of the i-th

segment (i.e., si = {ts, te, j}). We also want to find a set of

distinct patterns of multi-aspect segments by assigning each

segment to a unified segment group, namely, a regime.

Definition 1 (Regime): Let r denote the desired number of

segment groups. Each segment s is assigned to one of these

groups. We define such segment groups as regimes, which are

represented by a statistical model θi (i = 1, . . . , r).

Here, to represent the multi-aspect variation of sequences,

we use a hidden Markov model (HMM). An HMM is a statis-

tical model in which the system being modeled is assumed

to be a Markov process with hidden states. It is used in

many time-series pattern recognition techniques including in

the speaker recognition field and the analysis of biological

sequences. An HMM is composed of three probabilities: initial

state probabilities π = {πi}
k
i=1, state transition probabilities

A = {aji}
k
i,j=1 and output probabilities B = {bi(x)}

k
i=1,

where k is the number of hidden states.

Consequently, single regime dynamics can be described as

a set of parameters θ = {π,A,B}. We should also note that

our full model parameter set Θ consists of r regime parameter

sets θ1, . . . ,θr and one additional matrix, namely, the regime

transition matrix ∆r×r.

Definition 2 (Regime transition matrix): Let ∆r×r denote a

transition probability matrix of r regimes, where each element

δij ∈ ∆ is the regime transition probability from the i-th

regime to the j-th regime.

Here, each regime (e.g., θ1,θ2) has its own (within-regime)

state transition matrix (e.g., a1;ji ∈ A1, a2;ji ∈ A2), and

there is an upper-level transition matrix (e.g., δ12 ∈ ∆r×r)

that captures across-regime transitions (e.g., from θ1 to θ2).

TABLE II
SYMBOLS AND DEFINITIONS.

Symbol Definition

d Number of sensors
w Number of users
n Number of timestamps
X Time-series tensor: X = {X1, . . . ,Xw}
X d dimensional sensor sequence

m Number of segments in X
S Segment set in X : S = {s1, . . . , sm}
r Number of regimes in X
Θ Model parameter set of r regimes:

Θ = {θ1, . . . , θr,∆r×r}
θi Model parameters governing i-th regime
ki Number of hidden states in θi

∆r×r Regime transitions: ∆ = {δij}ri,j=1

F Segment membership: F = {f1, . . . , fm}
C Candidate solution: C = {m, r,S,Θ,F}
CostT (X ; C) Total cost of X given C

Definition 3 (Segment membership): Given a time-series

tensor X , let F be a set of m integers, F = {f1, . . . , fm},

where fi is the regime to which the i-th segment belongs (i.e.,

1 ≤ fi ≤ r).

Finally, our goal is to find a good description of X , i.e.,

the number of segments/regimes, their model parameters and

positions automatically, in a scalable way. We refer to it as a

candidate solution.

Problem 1 (Candidate solution): Given a time-series tensor

X consisting of (sensor, user, time) triplets, Find a complete

set of parameters, namely C = {m, r,S,Θ,F}, i.e.,
• m: the number of segments

• r: the number of regimes

• S = {s1, . . . , sm}: a set of m segments

• Θ = {θ1, . . . ,θr,∆r×r}: model parameters of r regimes

and their transition matrix

• F = {f1, . . . , fm}: segment membership of m segments

IV. OPTIMIZATION ALGORITHM

In the previous section, we saw how we can describe

complex sensor sequences. Now, we want to determine how

to estimate a candidate solution C. Specifically, we need to

answer the following two questions: (1) How can we automat-

ically find an optimal solution? (2) How can we efficiently and

effectively estimate C, which describes multi-aspect patterns?

Each question is dealt with in the following subsections.

A. Automatic time-series tensor analysis

Let us begin with the first question, namely, how can we

automatically find an optimal solution, and this is the focus

of this subsection. So, how should we determine the number

of segments and regimes? How can we compress C, and make

it as compact as possible? We want to answer the question

without any parameter tuning, that is, fully automatically. To

find the solution C, we introduce a new coding scheme, which

is based on the minimum description length (MDL) principle.

In short, it follows the assumption that the more we can

compress the data, the more we can learn about its underlying

patterns.



The total code length for X with respect to a given C can

be described as follows:

CostT (X ; C) = CostM (C) + CostC(X|C) (1)

Model description cost. The description cost of the model

parameter set CostM (C) consists of the following terms: the

number of sensors d, users w, and time points n require

log∗(d) + log∗(w) + log∗(n) bits 1, the number of segments

m and the number of regimes r require log∗(m) + log∗(r)
bits, the length of each segment s, needs

∑m−1
i=1 log∗ |si| bits,

the assignment of the segments to regimes requires m log(r),
the assignment of the segments to users requires m log(w),
and the model parameters of r regimes need CostM (Θ),
i.e., CostM (Θ) =

∑r

i=1 CostM (θi) + CostM (∆). Here,

CostM (θ) = log∗(k) + cF · (k + k2 + 2kd), where cF is the

floating point cost2. Similarly, the regime transition requires a

cost of CostM (∆) = cF · r2.

Data coding cost. Once we have decided the full parameter

set C, we can encode the data X using Huffman coding [30].

The encoding cost of X given C is:

CostC(X|C) =
∑m

i=1 CostC(X [si]|Θ) =
∑m

i=1 − ln(δvu ·
(δuu)

|si|−1 · P (X [si]|θu)), where the i-th and (i− 1)-th seg-

ments are governed by the u-th and v-th regimes, respectively.

Also, X [si] is a sub-sequence of segment si at time-series

tensor X , and P (X [si]|θu) is the likelihood of si at X . Note

that θu is the regime to which the segment si belongs.

B. Overview of multi-aspect mining

The fundamental question as regards mining time-series

tensors is whether there is any underlying structure. The

time-series tensor contains information about the relationship

between segments from multiple viewpoints, i.e., time domains

and/or users. Intuitively, we seek user-aspect groupings (i.e.,

groupings of multiple users for a particular activity) as well as

time-aspect groupings (i.e., temporal segmentation and group-

ing), which reveal the underlying structure. We would like to

simultaneously find multi-aspect groupings, which succinctly

summarize the underlying structure in the tensor.

We introduce analytical tools for multi-aspect mining,

i.e., time-aspect grouping and user-aspect grouping. The for-

mer tool tries to detect dynamic, temporal pattern transi-

tions/changes, and we refer to it as V-Split for vertical mining,

and the latter extracts individual user characteristics, namely

H-Split (i.e., the horizontal splitting algorithm). These splitting

algorithms, V-Split and H-Split, consist of the segment assign-

ment for each group (expressed as a regime) and the feature

extraction of the regime, and both can be performed from

their own viewpoint. That is, V-Split estimates regimes from

the viewpoint of time domains, and H-Split computes their

regimes as individual user characteristics from the viewpoint

of users.

Our proposed method, CUBEMARKER, chooses one of these

tools, V-Split and H-Split, for every iteration, and the decision

1Here, log∗ is the universal code length for integers.
2We used 4× 8 bits in our setting.

Algorithm 1 V-Split (X )

1: Input: Time-series tensor X
2: Output: (a) Number of segments assigned to each regime, m1,m2

3: (b) Segment sets of two regimes, S1,S2

4: (c) Model parameters of two regimes, {θ1, θ2,∆}
5: Initialize models θ1,θ2,∆2×2;
6: while improving the cost do
7: {m1,m2,S1,S2} =V-Assignment (X ,θ1,θ2,∆);
8: θ1 =ModelEstimation (S1); θ2 =ModelEstimation (S2);
9: Update ∆ from S1,S2;

10: end while
11: return {m1,m2,S1,S2,θ1,θ2,∆};

is made according to the total cost (Equation 1). This approach

provides a flexible data summarization process, which achieves

a dramatic reduction in terms of both modeling error and

computation cost.

Specifically, given an original time-series tensor X , CUBE-

MARKER iteratively splits X into multi-aspect segments while

selecting the appropriate algorithm (V-Split or H-Split), and

creates/estimates new regimes, as long as the total cost keeps

decreasing. In short, given a time-series tensor X , CUBE-

MARKER consists of the following algorithms:

1) V-Split: Finds time-aspect features and their shifting

points by splitting X into two groups of segments (i.e.,

S1,S2) in a vertical (time) aspect and estimates their

regime parameter sets θ1, θ2, ∆.

2) H-Split: Finds user-aspect features by splitting X into

two segment groups S1,S2 in a horizontal (user) aspect

and estimates regimes θ1, θ2, ∆.

3) CubeMarker: Finds a compact summary C of X by using

V-Split and H-Split.

We describe the above algorithms in detail in the following

subsections.

C. V-Split

Given a time-series tensor X , our first goal is to find two

groups of segments S1,S2 in a time-aspect view, and estimate

their regime parameters θ1,θ2, ∆. We propose V-Split, which

employs an iterative refinement framework that performs the

following phases:
• (Phase 1) V-Assignment: Finds two sets of segments

S1,S2 and their shifting points based on the coding cost,

given the tensor X and the model parameters of two

regimes (i.e., θ1,θ2, ∆).

• (Phase 2) ModelEstimation: Estimates the model param-

eters of two segment sets {θ1,θ2, ∆} according to the

new segmentation result S1,S2.
Algorithm 1 shows the overall procedure for V-Split. For

each iteration, the algorithm tries to find the best segment sets

S1,S2 so that it minimizes the coding cost. Then it estimates

the model parameters {θ1,θ2, ∆} using the segmentation

results, S1,S2. It continues these two steps until convergence.

1) V-Assignment: Given a time-series tensor X and the

model parameters of two regimes, {θ1,θ2,∆}, we propose

a one-path algorithm called V-Assignment, which efficiently

detects appropriate time-aspect segments and their shifting

points. An elementary concept that we need to introduce
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Fig. 2. Illustration of V-Assignment. Given a time-series tensor and two
models θ1,θ2, our algorithm detects the regime shifting points by computing
the Viterbi path that extends over all users.

is the transition diagram shown in Figure 2. We connect

the transition diagrams of two regimes, θ1 and θ2, com-

pare the two regimes for each time in terms of coding

cost, and estimate the pattern transition of the sequences

between the given regimes. We use a dynamic programming

approach, namely the Viterbi algorithm [31], to compute

the coding cost CostT (X|Θ) = − lnP (X|Θ). Specifically,

the likelihood value P (X|Θ) is computed as: P (X|Θ) =
maxi=1,2{P (X|Θ)i}, where P (X|Θ)i is the likelihood value

of the regime shift to θi. As an example, P (X|Θ)1 is

computed as follows:

P (X|Θ)1 = max
1≤i≤k1

{p1;i(t)}

p1;i(t) = max















δ21 ·maxu{p2;u(t− 1)} · π1;i · b1;i(xt)
// regime shift from θ2 to θ1

δ11 ·maxj{p1;j(t− 1) · a1;ji} · b1;i(xt)
// staying at regime θ1

where p1;i(t) is the maximum probability of state i of regime

θ1 at time point t, δ21 is the regime transition probability from

θ2 to θ1, maxu{p2;u(t − 1)} is the probability of the best

state of θ2 at time point t − 1, π1;i is the initial probability

of state i of θ1, b1;i(xt) is the output probability of xt for

state i of θ1, and a1;ji is the transition probability from state

j to state i in θ1. Here, at time point t = 1, the probability

for each regime θ1 is given by p1;i(1) = δ11 · π1;i · b1;i(xt).

2) ModelEstimation: Given the segment sets {S1,S2}, the

task is to estimate the model parameters of two regimes. Note

that the ModelEstimation algorithm requires the number of

hidden states k for each model θ, and so how can we determine

the optimal number for k? If we use a small number for

k, the generated model does not fit the data, and thus the

algorithm cannot find the optimal number of segments and

regimes. On the other hand, if we use a large number for k,

the model causes over-fitting. For the above reason, we vary

k = 1, 2, 3, ..., and determine appropriate models to minimize

the cost function: CostM (θ) + CostC(X [S]|θ). When the k

number is determined, we estimate the model parameters using

the BaumWelch algorithm [32]. We also need to update the

regime transition probabilities ∆ to minimize the coding cost.

We compute ∆ = {δ11, δ12, δ21, δ22} using the shifting points

of segments {S1,S2} and the model parameters {θ1,θ2}:

Algorithm 2 H-Assignment (X ,θ1,θ2,∆)

1: Input: Tensor X , model parameters {θ1,θ2,∆}
2: Output: Segment sets of two regimes, {m1,m2,S1,S2}
3: m1 = 0; m2 = 0; S1 = ∅; S2 = ∅;
4: for i = 1 to w do
5: if CostC(X [i]|θ2,∆) > CostC(X [i]|θ1,∆) then
6: S1 = S1 ∪ X [i];
7: m1 = m1 + |X [i]|;
8: else
9: S2 = S2 ∪ X [i];

10: m2 = m2 + |X [i]|;
11: end if

12: end for
13: return {m1,m2,S1,S2};

δ11 =
∑

s∈S1
|s|−N12

∑
s∈S1

|s| , δ12 = N12∑
s∈S1

|s| , where
∑

s∈S1
|s|

represents the total length of the segments that belong to

regime θ1, and N12 shows the regime shift count from θ1

to θ2. We also compute δ21, δ22 in a similar fashion, and omit

the explanation.

Lemma 1: The V-Split algorithm takes O(dwn(k1 + k2)
2)

time.

Proof 1: The V-Assignment algorithm must compute

O(dw(k1+k2)
2) numbers per time point, where k1 and k2 are

the number of states of the regime θ1 and θ2. The algorithm

requires only a single scan to find shifting points. Thus, the

time complexity of the V-Assignment is O(dwn(k1 + k2)
2).

The ModelEstimation algorithm takes O(dwn(k1+k2)
2) time.

Consequently, the time complexity of the V-Split algorithm is

O(dwn(k1 + k2)
2).

D. H-Split

We have described how to capture the transitions of time-

evolving patterns (i.e., time-aspect features) in a given X . In

reality, the time-series tensor will include personal differences

- for example, two drivers may have the same driving straight

patterns but their turning might be different. Whose patterns

are different and which patterns are they? Our approach

provides a powerful solution that distinguishes user-aspect pat-

terns based on the model parameters. In short, this algorithm

splits a given X into two regimes in a user-aspect view, and

estimates the model parameters using a two-phase iteration,

i.e.,

• (Phase 1) H-Assignment: Split X into two sets of seg-

ments S1,S2 in a user-aspect view, based on the model

parameters of two regimes {θ1,θ2,∆}.

• (Phase 2) ModelEstimation: Update the model parame-

ters {θ1,θ2,∆} based on the new H-Assignment result.

The horizontal splitting can be performed in the same

manner as the V-Split algorithm (we omit it due to the

space limitation). The difference is that we use H-Assignment,

instead of V-Assignment, for H-Split. Specifically, H-Split tries

to find the best regimes in order to minimize the coding cost

based on the model parameters (Phase 1). Then it estimates

new model parameters {θ1,θ2,∆} based on the above group-

ing result (Phase 2). H-Assignment results improve ModelEs-

timation results, and ModelEstimation results also improve H-



Algorithm 3 CubeMarker (X )

1: Input: Time-series tensor X
2: Output: Solution C = {m, r,S,Θ,F}
3: Q = ∅; /* Q: stack for segments and regimes */
4: S = ∅; m = 0; r = 0; m0 = w;
5: S0 = {(1, n, 1), ..., (1, n, w)};
6: θ0 =ModelEstimation (X [S0]);
7: Push an entry {m0,S0,θ0} into Q;
8: while stack Q 6= ∅ do
9: Pop an entry {m0,S0,θ0} from Q;

10: {θ1,θ2,∆2×2} = ModelSampling(X [S0]);
11: {mV

1
,mV

2
,SV

1
,SV

2
} =V-Assignment (X [S0], θ1,θ2,∆);

12: {mH
1
,mH

2
,SH

1
,SH

2
} =H-Assignment (X [S0],θ1, θ2,∆);

13: /* Compare V-Split v.s. H-Split */
14: if CostT (X [S0];S

H
1
,SH

2
, θ1, θ2) > CostT (X [S0];S

V
1
,SV

2
, θ1, θ2)

then
15: {m1,m2,S1,S2,θ1, θ2,∆} =V-Split (X [S0]);
16: else
17: {m1,m2,S1,S2,θ1, θ2,∆} =H-Split (X [S0]);
18: end if
19: /* Compare single regime θ0 v.s. regime pair θ1 and θ2 */
20: if CostT (X [S0];S0, θ0) > CostT (X [S0];S1,S2,θ1, θ2) then
21: Push entries {m1,S1, θ1}, {m2,S2,θ2} into Q;
22: else
23: r = r + 1; fi = r(i = m+ 1, . . . ,m0);
24: m = m+m0; S = S ∪ S0; Θ = Θ ∪ θ0;
25: Update ∆r×r ;
26: end if
27: end while

28: return C = {m, r,S,Θ,F};

Assignment results for each iteration. H-Split repeats the above

two phases until convergence.

1) H-Assignment: We propose H-Assignment, which splits

X into two sets of segments S1,S2 that capture user-aspect

features. Specifically, Algorithm 2 shows the procedure for

H-Assignment. Instead of using one of the traditional clus-

tering algorithms for all segments in X , our algorithm, H-

Assignment, can effectively extract the user-aspect features

(e.g., user/driver characteristics for particular motions) from

the time-series tensor X . The idea is quite simple and ef-

ficient: given a time-series tensor X , a number of regimes

(r = 2) and model parameters {θ1,θ2,∆}, it computes the

coding cost to assign segments of an user i as: {Sθ} =
arg min
θ∈θ1,θ2

CostC(X [i]|θ,∆), where X [i] = {s1, s2, . . . } is a

segment set in user i.

Lemma 2: The H-Split algorithm takes O(dwn(k21 + k22)).

Proof 2: The H-Assignment algorithm computes the coding

cost of all segments for two model parameters {θ1,θ2}. Thus

the iteration of the algorithm requires O(dwn(k21 +k22)) time.

Also, we need to update the model parameters {θ1,θ2}.

Consequently, the algorithm requires O(dwn(k21 + k22)).

Complexity of V-Split and H-Split. As described above, the

V-Split and H-Split algorithms require O(dwn(k1+k2)
2) and

O(dwn(k21 +k22)), respectively. That is, the H-Split algorithm

is O(dwn · 2k1k2) times faster than the V-Split algorithm,

which means the H-Split algorithm can find the user-aspect

features effectively and efficiently. H-Split becomes more

effective as the patterns become more complex and the data

size increases (please see section V for detailed experiments).

E. CubeMarker

Our final goal is to find multi-aspect patterns and their

regimes automatically. We propose a stack-based algorithm,

CUBEMARKER, which enables the effective optimization of

the number of segments and regimes.

Algorithm. The CUBEMARKER algorithm is shown in detail

as Algorithm 3. Our algorithm is based on the greedy ap-

proach, that is, it splits a time-series tensor X into segments,

and creates new regimes, as long as the coding cost (Equation

1) keeps decreasing. Specifically, at each step, the algorithm

pops an entry {m0,S0,θ0} from the stack Q. The algorithm

then tries to refine the current regime model parameter θ0

using an appropriate split algorithm (V-Split or H-Split),

according to the coding cost. That is, it finds a new candidate

regime pair {θ1,θ2}, and their segment sets {S1,S2} for a

given segment set S0. The algorithm compares the cost of

the new regimes CostT (X ;S1,S2,θ1,θ2) and the cost of the

original regime CostT (X ;S0,θ0), and if the new regimes win,

it pushes them into the stack Q. Otherwise, it leaves the regime

out of the stack, and outputs {m0,S0,θ0} as the result. The

results of these steps are selected based on the cost function

(i.e., Equation 1). The algorithm is repeated until the holding

stack Q is empty.

Model sampling. Before we start CUBEMARKER, we should

initialize the model parameters {θ1,θ2} with some random

values. The most straightforward solution would be simply

to estimate the initial parameters using randomly selected

segments of X . However, this approach might cause conver-

gence to a local minimum of the cost function, depending

on the initial values. We thus propose using a sampling-

based approach. The idea is that we first uniformly take

several sample segments from the original X . We then estimate

the model parameters θs for each sample segment s, and

compute the following coding cost of all possible pairs of

segments {θs1 ,θs2}. Finally, we choose the most appropriate

pair {θ1,θ2} = arg min
θs1

,θs2
|s1,s2∈Xs

CostC(X|θs1 ,θs2), where

Xs = {s1, s2, . . . } is a set of samples taken from X .

Running example. Figure 3 shows a running example of

our method with (#1) Workout. Starting with r = 1 (at

iteration 0), CUBEMARKER progressively finds multi-aspect

regimes. Specifically, CUBEMARKER first finds time-aspect

pattern transitions, i.e., θ1: shoulder workout (purple) → θ2:

arm curl (gray) in Figure 3(b). Next, CUBEMARKER captures

the individual difference of θ1: shoulder workout, and splits

the regime into new regimes, i.e., θ1: shoulder workout #1

(side raise) and θ2: shoulder workout #2 (rowing) shown

in Figure 3(c). During regime splitting, the cost is greatly

reduced (see Figure 3(d)).

Lemma 3: The computation time of our method is linear

with the input size.

Proof 3: For each iteration, V-Split requires O(dwn(k1 +
k2)

2) time to find the segments and regimes, and estimate the

model parameters. H-Split requires O(dwn(k21 + k22)) time,

and thus the time complexity is O(#iter · dwn(k1 + k2)
2).
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Fig. 3. Running example of CUBEMARKER with (#1) Workout (shown in Table III). (a)-(c) CUBEMARKER finds multi-aspect regimes per iteration (i.e.,
θ1: shoulder workout #1 (side raise) θ2: shoulder workout #2 (rowing) and θ3: arm curl) using (b) V-Split and (c) H-Split, (d) while reducing the total cost
(Equation 1).

TABLE III
SUMMARY OF REAL-WORLD DATASETS.

Dataset Data size (d× w × n)

(#1) Workout 7× 182× 4000
(#2) Tennis 7× 100× 4500

(#3) Factory 7× 60× 3000
(#4) Reading 5× 71× 10000

(#5) Free throw 7× 170× 2000
(#6) Automobile-Tokyo 3× 171× 2400

(#7) Automobile-Expressway 3× 13× 9100
(#8) Automobile-Togu 3× 32× 5200

Here, the numbers of iterations #iter and hidden states k1, k2
are negligible because they are small constant values. Thus,

the complexity is O(dwn).

V. EXPERIMENTS

To evaluate the capacity of CUBEMARKER, we carried

out experiments on the eight real-world datasets shown in

Table III. We normalized the values of each dataset so that they

had the same mean and variance (i.e., z-normalization). Our

experiments were conducted on 2.7GHz 12-core Intel Xeon

E5 processor with 64GB of memory. The experiments were

designed to answer the following questions:

• Q1 Effectiveness: How successful is our method in

capturing multi-aspect patterns in given complex sensor

sequences?

• Q2 Accuracy: How well does our method find regimes

and their shifting points?

• Q3 Scalability: How does our method scale in terms of

computation time?

A. Q1: Effectiveness

We have already provided examples of CUBEMARKER in

Figure 1 and Figure 3. Here we provide other results.

1) Sport analysis: We first describe our results for (#2)

Tennis. This dataset consists of d = 7 dimensional sensors,

which are collected by 3-d acceleration sensors and a 4-d elec-

tromyogram (50 Hz) attached to the right arm of the user. We

compared our method with state-of-the-art methods, namely,

TICC [28], AutoPlait [29] and pHMM [26]. Figure 4 (a) shows

the results we obtained with our method. Figure 4 (b-1) and

(b-2) show the results obtained with TICC. It required two

regularization parameters, β and λ, which corresponded to

the number of segments and their length. Moreover, TICC

needs a parameter for the number of regimes, and we gave

the correct number of regimes (i.e., r=6). Figure 4 (c) shows

the result obtained with AutoPlait, and Figure 4 (d-1) and (d-

2) show the results obtained with pHMM. pHMM also needs

two parameters, ǫr, ǫc, which corresponded to the fitting errors.

Multi-aspect pattern detection: Our method found various

important regimes, i.e., θ2: backhand slice, θ3: forehand

stroke, θ4: backhand stroke, θ5: volley, and θ6: smash. In

contrast, the competing approaches could not find such tennis

strokes even when they were given the correct number of

clusters and appropriate parameters. Moreover, they could not

find user-specific patterns. Note that our method could iden-

tify the above multi-aspect regimes even though the dataset

includes different lengths and numbers of segments without

any parameters.

Physical fatigue identification: Here we show an interesting

result in terms of the discovery of personal differences, namely

physical fatigue identification. The top three sequences in

Figure 4 were obtained from normal users and the bottom

of the figure shows an exhausted user’s sequence. We had

a professional tennis player confirm that the exhausted user

could not execute a volley well compared with the other

strokes. The bottom of Figure 4(a) shows that our method

precisely identified not only usual strokes but also unusual

strokes, i.e., θ5: normal volley and θ1: exhausted volley,

although our competitors could not detect these user-specific

(user-aspect) differences.

Consequently, our method can discover individual differ-

ences and similarities in X thanks to our multi-aspect mining.

2) Automobile driving analysis: The next example is an

automobile driving analysis, where the aim is to deeply

understand human driving activities, and find some usual or

unusual behavior so that we can integrate their features in

self-driving cars and develop advanced self-driving technology

without depending entirely on attached cameras to avoid

serious problems.

The dataset consisted of sequences of 3-dimensional vec-

tors: velocity, longitudinal and lateral acceleration. We per-

formed experiments on these real automobile datasets and

have already shown the result for (#8) Automobile-Togu

in Figure 1. Here, we carried out experiments on (#7)

Automobile-Expressway, which were obtained by driving on

an ordinary road (t = 0 ∼ 2000, 6000 ∼ 9100) and an urban

expressway (t = 2000 ∼ 6000).



(a) CUBEMARKER (b-1) TICC (β = 100, λ = 1000) (b-2) TICC (β = 600, λ = 1000)

(no parameter setting) (need parameter setting) (need parameter setting)

(c) AutoPlait (d-1) pHMM (ǫr = 0.1, ǫc = 0.8) (d-2) pHMM (ǫr = 10, ǫc = 0.8)

(no parameter setting) (need parameter setting) (need parameter setting)

Fig. 4. CUBEMARKER is automatic and effective: Results with (a) our method and (b-d) those of our competitors for (#2) Tennis dataset consisting of
d = 7 sensors, w = 100 users/players, n = 4500 time points. The top three sequences of the figure were obtained from normal users/players and the bottom
sequence was obtained from an exhausted user/player. CUBEMARKER successfully identifies multi-aspect patterns, such as θ6: smash and θ3: forehand

stroke regardless of the length and number of segments. Moreover, our method is able to find a user-specific stroke, i.e., θ1: exhausted volley. Note that
CUBEMARKER finds the correct patterns and their groups, while its competitors are very sensitive to parameter settings.

We are especially interested in the following questions: (1)

Can CUBEMARKER indeed discover high-quality regimes? (2)

Can CUBEMARKER capture meaningful time transitions? And

(3) do different regimes reflect user-aspect differences? On

the basis of the results, we obtained the following interesting

findings.

(1) Regimes are highly interpretable. In Figure 5, the seg-

ments belong to 7 regimes, which clearly reflect such driving

activities as careful driving (red area, θ7), and speeding up

(blue area, θ2).

(2) The regime shifting points are intuitive. For example,

see the top of Figure 5(c), which shows the details of the

shifting points, that is, careful driving (red area, θ7) → going

straight (orange area, θ6) → careful driving (red area, θ7)

→ speeding up due to an interchange (blue area, θ2). This

clearly reflects the transition of driving operations, and our

method finds these shifting points perfectly for all users.

(3) The regimes capture the individual differences in driv-

ing patterns. Again, see Figure 5(c), users A and B accel-

erate around an interchange, while user C (the bottom of

Figure 5(c)) continues with careful driving (red area, θ7) due

to a traffic sign.

As can be seen in the above, CUBEMARKER finds these

multi-aspect driving patterns and their shifting points, which

help us understand driving behavior.

3) Factory worker monitoring: The last example is factory

worker monitoring for (#3) Factory. Here, the aim is to

monitor human workers in factories and find any unusual

and user-specific behavior so that we can check the work-

ers’ mental and physical condition and avoid serious errors.

Figure 6 shows our result for the dataset. This dataset consists

of d = 7 dimensional event entries including acceleration

and an electromyogram, which are monitored with a device

attached to the right arm of the worker. The event activity

consisted of two consecutive steps: carrying → assembling

→ · · · . In this situation, our aim is to monitor the worker’s

behavior and identify any user-specific patterns to check the

condition of both worker and machine. Our method success-

fully captures user-specific activities, such as θ1: discarding

defective products and θ2: arm stretch. θ1 implies machine

trouble, and θ2 indicates worker fatigue. This can help us to

avoid serious errors.
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Fig. 6. Multi-aspect mining for (#3) Factory. CUBEMARKER successfully
captures normal patterns (i.e., θ3: carrying and θ4: assembling) and also
finds user-specific patterns (i.e., θ1: discarding defective product). Moreover,
CUBEMARKER finds a one-shot outlier (i.e., θ2: stretch arms).

B. Q2: Accuracy

We now discuss the quality of our method in terms of

segmentation, clustering and modeling accuracy. We compare

our method with TICC [28], AutoPlait [29] and pHMM

[26]. Moreover, to reveal the effectiveness of our multi-aspect

mining, we also compare it with CUBEMARKER-V, which

performs segmentation and regime identification only with

V-Split. pHMM and TICC require user-defined parameters,

and we varied the accuracy threshold ǫr from 0.1 to 100 for

pHMM, and the regularization parameter β from 1 to 2000
for TICC. TICC also needs the number of clusters, and we

conducted experiments on various numbers of clusters (i.e., 2,

4 and 8, shown as TICC-2, TICC-4 and TICC-8). There are

no correct answers for datasets (#6)-(#8), and so we applied

our method to (#1)-(#5) in terms of pattern segmentation and

segment clustering.

1) Accuracy of pattern segmentation: First, we show how

accurately our method can find pattern transitions. Figure 7

shows the precision and recall scores of the competitors. Here,

precision is defined as the ratio of reported correct shifting

points versus the total number of reported shifts. Recall is

defined as the ratio of reported correct shifts versus the total

number of correct shifts. Note that we must achieve high

values for both the scores in a segmentation task. That is,

the closer the precision and recall results are in the top right

of the figure, the more accurate the method is. In Figure 7,

CUBEMARKER and AutoPlait are described as a point, since

these methods do not need any parameters. Our method is very

close to the ideal point.

2) Accuracy of segment clustering: Next, we discuss the

quality of CUBEMARKER in terms of multi-aspect clustering

accuracy. Since we know the true labels of each pattern

and each sequence, we evaluate our method as a cluster-

ing problem. Specifically, we adopt a standard measure of

conditional entropy (CE) from the confusion matrix (CM)

of the prediction regime labels against true regime labels

to evaluate the clustering quality. The CE score shows the

difference between two clusters using the following equation:

CE = −
∑

i,j

CMij∑
ij

CMij
log

CMij∑
j
CMij

. Note that the ideal

confusion matrix will be diagonal, in which case CE = 0.

Figure 8 compares CUBEMARKER with our competitors in

terms of CE score. Our method consistently outperforms the

competitors in this task because of our multi-aspect mining

approach.

C. Q3: Scalability

We now evaluate the efficiency of CUBEMARKER. Figure 9

shows the wall clock time for each dataset at d = 100, w =
100, n = 1000. We used ǫr = 0.1, ǫc = 0.8 for pHMM, and

λ = 1000, β = 600 for TICC. Figure 10 also compares our

method with the competitors for (#1) Workout in terms of

computational cost when the number of sensors d, timestamps

n and users w are varied. As we expected, CUBEMARKER,

AutoPlait and TICC are linear with regard to data size (i.e.,

slope = 1.0 in log-log scale). However, pHMM needs O(n2)
(i.e., slope ≈ 2.0). In fact, on average CUBEMARKER is 1700
times faster than pHMM at d = 100, w = 100, n = 1000, and

2.3 times faster than AutoPlait. Moreover, as we mentioned

in Section IV-D, CUBEMARKER finds multi-aspect patterns

effectively and efficiently. Our method is 1.8 times faster

than CUBEMARKER-V. Consequently, our method requires

O(dwn) time despite having the ability to find multi-aspect

patterns and this improves the model quality.

VI. CONCLUSIONS

In this paper, we focused on the problem of the automatic

mining of complex sensor sequences, and presented CUBE-

MARKER, which exhibits all the desirable properties:
• Effective: it finds meaningful patterns and groups (i.e.,

multi-aspect segments and regimes) in complex sensor

sequences.

• Automatic: it needs no parameter tuning, thanks to our

coding scheme.

• Scalable: it scales very well since it is linear as regards

dataset size (i.e., O(dwn)).
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Fig. 7. Segmentation accuracy: the precision and recall for segment shifting points (higher is better). CUBEMARKER achieves at most 98% precision
and 92% recall, while its competitors cannot find the correct segments.
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of the confusion matrix between true labels and the output results. Even here
CUBEMARKER outperforms the other methods.
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Fig. 10. Wall clock time vs. dataset size for (#1) Workout :CUBEMARKER is
linear (i.e., slope = 1.0 on log-log scale), while pHMM is at least quadratic
(i.e., slope ≈ 2.0).

We also performed our analytics on real-world IoT datasets

(e.g., industries, automobiles and health care), and demon-

strated the practicality of our multi-aspect mining approach.
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