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ABSTRACT

Given a large time-evolving event series such asGoogleweb-search

logs, which are collected according to various aspects, i.e., times-

tamps, locations and keywords, how accurately can we forecast

their future activities? How can we reveal signi�cant patterns that

allow us to long-term forecast from such complex tensor streams?

In this paper, we propose a streaming method, namely, Cube-

Cast, that is designed to capture basic trends and seasonality in

tensor streams and extract temporal and multi-dimensional rela-

tionships between such dynamics. Our proposed method has the

following properties: (a) it is e�ective: it �nds both trends and sea-

sonality and summarizes their dynamics into simultaneous non-

linear latent space. (b) it is automatic: it automatically recognizes

andmodels such structural patterns without any parameter tuning

or prior information. (c) it is scalable: it incrementally and adap-

tively detects shifting points of patterns for a semi-in�nite collec-

tion of tensor streams. Extensive experiments that we conducted

on real datasets demonstrate that our algorithm can e�ectively

and e�ciently �nd meaningful patterns for generating future val-

ues, and outperforms the state-of-the-art algorithms for time series

forecasting in terms of forecasting accuracy and computational

time.
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1 INTRODUCTION

Time series forecasting has been playing a signi�cant role in pro-

viding a wide range of applications such as smart decision making

[10], automated sensor network monitoring [9, 16] and user activ-

ity modeling [19], where analysts are interested in �nding useful

patterns in collected data with which to predict future phenomena.

For example, marketers want to know how many people will react

to their products to enable inventory management, new product

development, etc. They can avoid wasting human and material re-

sources by accurately forecasting future customer behavior.

The modeling of dynamic patterns has been addressed for sev-

eral decades but remains a challenging task thanks to the advent

of the Internet of Things (IoT) [6, 20], which enables us to access a

massive volume and variety of time series, and thus data have mul-

tiple domains. For example, when we consider user behavior anal-

ysis in relation to web search activities, observations could be of

the form (timestamp, location, keyword), which is also called a 3rd-

order tensor. Thus, there has been a need for the multi-waymining

of tensor streams. Given such large tensor streams, how can we ex-

tract the bene�cial dynamics from a complex tensor? How can we

forecast future activities e�ectively? The di�culties involved in

forecasting tensor streams have the following two causes: (a) Mul-

tiple factors behind observable data: Many time series data contain

several patterns such as trends and seasonality; moreover we can-

not know their real characteristics in advance. More importantly,

such dynamic patterns appear individually in several groups by

location, product category, etc. It is extremely di�cult to design

an appropriate model for such patterns by hand. The method for

tensor streams should therefore be fully automatic as regards es-

timating model parameters and the number of hidden dynamical

patterns. This would enable us to understand data structures and

thus save time and human resources. (b) Patterns that vary over

time: All the factors in time series can change as time progresses

for any of a number of reasons, e.g., new product releases. It is

important to understand not only trends and seasonality but also

their dynamical changes. We refer to individual pattern groups as

a regime. We want to detect regime changes and re�ect the latest

information in a model as quickly as possible to realize highly ac-

curate adaptive tensor forecasting.

In this paper, we tackle a challenging problem, namely, the real-

time forecasting of tensor streams, andwe presentCubeCast, which

is an e�ectiveminingmethod that can simultaneously capture time-

evolving trends and seasonality as well as multiple discrete pat-

terns in tensor streams. Intuitively, the problem we wish to solve

is as follows.

https://doi.org/10.1145/3394486.3403260
https://doi.org/10.1145/3394486.3403260


KDD ’20, August 23–27, 2020, Virtual Event, CA, USA Koki Kawabata, Yasuko Matsubara, Takato Honda, and Yasushi Sakurai

C
ou
nt
rie
s

K
e
y
w
o
rd
s

Time
Jan Mar May Jul Sep Nov

Time

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

V
a
lu

e

S1

S2

Black Friday

New Year

(a) Tensor stream (b) Seasonal patterns (c) Location-speci�c pattern groups

Figure 1: Modeling power of CubeCast for an online search volume tensor stream related to �ve apparel companies: (a)

Given the original tensor (gray lines), CubeCast quickly identi�es the non-linear dynamics in the latest tensor (blue), then,

continuously forecasts multiple steps ahead values (red), (b) while extracting seasonal patterns common to all countries. (c) It

also automatically identi�es similar country groups based on their trends and seasonality, which are compressed into compact

models (please also see Figure 2).

InformalProblem 1. Given a tensor streamX up to the current

time point tc , which consists of elements at dl locations for dk key-

words, i.e., X = {xt i j }
tc ,dl ,dk
t,i, j=1 ,

• �nd trends and seasonal patterns

• �nd a set of groups (i.e., regimes) of similar dynamics

• forecast ls -step ahead future values, i.e., Xf = {xt i j } where

(t = tc + ls ; i = 1, . . . ,dl ; j = 1, . . . ,dk )

• continuously and automatically in a streaming fashion.

1.1 Preview of our results

Figure 1 shows the result of CubeCast for online mining over a

time-evolving tensor stream. Figure 1 (a) shows a data stream that

consists of weekly web-online search volumes in relation to ap-

parel companies in �fty countries. CubeCast retains only recent

tensor series (shown in blue) and produces future values (shown in

red) by extracting important patterns and dynamics hidden in the

tensor. Speci�cally, our method captures the following properties:

• Long-term trends: Figure 1 (a) shows our algorithm,which

scans the latest tensor incrementally and captures non-linear

trends to realize the long-term forecasting. As shown in the

�gure,CubeCast successfully captures trends exhibiting an

overall increase such as “zara” in the stream for the United

States.

• Seasonality: Figure 1 (b) shows the seasonalities extracted

from the tensor stream using CubeCast. It found the two

kinds of yearly patterns resulting from “New year sales” and

“Black Friday”. To accurately forecast time-evolving dynam-

ics, we must discover and model such periodic patterns.

• Multi-aspect dynamic patterns:CubeCast can �ndmulti-

aspect (i.e., time and country) patterns. Figure 1 (c) shows

theCubeCast clustering result for �fty countries from 2006

to 2008, where the result is plotted in color on a world map.

It identi�es groups of countries by summarizing their dy-

namics (i.e., both trends and seasonality) into compact mod-

els. For example, Figure 2 shows our (52 : 65)-steps ahead

forecasting results when given a tensor for two consecutive

years. Given the data between the blue lines, our method
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(a) Similar dynamics between countries
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(b) Time-varying dynamics in a country

Figure 2: Multi-aspect mining of CubeCast for Google-

Trends related tomajor apparel companies. It automatically

detects (a) similar country groups based ondynamics, and (b)

changes between discrete dynamics.

generates the future values shown between the red lines.

As shown in Figure 2 (a), our algorithm groups the United

States and the United Kingdom into the same group because

they have similar dynamics including a strong seasonality

for “gap”. Figure 2 (b) shows the pattern di�erences between

moments for search counts in Italy where the search counts

of “h&m” grew hugely. By switching a model for an upcom-

ing pattern, it e�ectively forecasts tensor streams.

Note that our method �nds all the above important components in

a streaming fashion, without parameter tuning.

1.2 Contributions

In this paper, we propose a streaming method, namely, CubeCast,

for the e�cientmining and forecasting of co-evolving tensor streams.

In summary, our proposed method has the following properties.
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• E�ective: CubeCast operates on large tensor streams and

decomposes them into similar groups, i.e., regimes, with re-

spect to both time and location, each of which captures la-

tent non-linear dynamics for trends and seasonality.

• Automatic: We carefully formulate data encoding schemes

to reveal predictable patterns/dynamics, which enables us to

analyze complex tensors without any expertise with respect

to dataset and parameter tuning.

• Scalable: The computational time required by CubeCast is

constant with regard to the entire length of the input tensor.

Our algorithm outperforms the state-of-the-art algorithms

for time series forecasting.

The rest of this paper is organized as follows: In Section 2 we in-

troduce related studies. We present our proposed model and its

optimization algorithms in Section 3 and Section 4, respectively.

We provide our experimental results in Section 5, followed by our

conclusions in Section 6.

2 RELATED WORK

The mining and forecasting of big time series are highly signif-

icant topics, especially in relation to data mining and databases

[20, 25, 26]. Table 1 shows the relative advantages of our method.

Only CubeCast meets all requirements. We roughly separate our

descriptions of related work into three categories.

Conventional approaches for time series forecasting are based

on statistical models such as auto regression (AR), linear dynamical

systems (LDS), Kalman �lters (KF), and their extensions. Regime-

Cast [15] andOrbitMap [16] are real-time forecastingmethods that

can capture latent non-linear dynamics inmulti-dimensional event

streams. However, these methods cannot model seasonal patterns

in the streams. In recent years, many deep neural network models

have been proposed [8, 22]. In particular, Long short-term mem-

ory (LSTM) and Gated recurrent units (GRUs) are well known deep

structures for capturing long-term temporal dependencies [1], but

sensitive parameter tuning and a high training cost are needed if

we are to obtain generalized models.

For mining high-order data, tensor decomposition is a powerful

technique with which to understand latent factors in data, and it

has been extensively studied over the past few decades [3, 12, 33].

For example, AutoCyclone [30] provides the robust factorization

needed for separating basic trends, seasonality and outliers from

time series by considering the seasonal stacked time series as a

tensor. There have also been many online/incremental approaches

to the techniques [28, 29, 34]. However, these methods typically

focus on data completion, i.e., the recovery of missing values in

tensors with their multilinear relationships, rather than the pre-

diction of future data. For time series forecasting, CompCube [18]

and PowerCast [27] exploit suitable non-linear equations for their

dataset domains. For a more general approach to tensor time series,

a multi-linear dynamical system (MLDS) [24] has been proposed as

a straightforward extension of LDS, which can jointly learn tempo-

ral dependency and tensor factorization, while remaining a linear

model.

Clustering and summarizing time series are also relevant to our

work [7, 14, 32]. AutoPlait [17] and BeatLex [9] can automatically

Table 1: Capabilities of approaches. Only CubeCast meets

all requirements.
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Stream processing - X - - - - - X

Tensor analysis - - X - X X - X

Data compression - - - X - X X X

Non-linear - X X X - X - X

Seasonality X - - X - X - X

Segmentation - X - - - - X X

Forecasting X X X - X X - X

Parameter free - - - X - X X X

�nd multiple distinct dynamical patterns. As with the two meth-

ods, the minimum description length (MDL) principle is widely

applied to the automation of optimization processes [2, 4, 13, 31].

Unlike previous studies, this work addresses the automatic pattern

mining of a speci�c dimension (e.g., locations) of tensors based on

non-linear models. As a consequence, none of the previous studies

speci�cally address the modeling and forecasting of non-linear dy-

namics in tensor streams, which include seasonality and multiple

distinct patterns.

3 PROPOSED MODEL

In this section, we describe our proposed model namely, Cube-

Cast, for mining time-evolving tensor streams. We �rst introduce

notations and de�nitions, and then explain the model in detail.

3.1 Problem de�nition

Table 2 lists the main symbols that we use throughout this paper.

We consider a tensor stream to be a 3rd-order tensor, which is de-

noted by X ∈ Rtc×dl×dk , where tc is the number of time points,

anddl anddk show the numbers of locations and keywords, respec-

tively. That is, the element xt i j corresponds to the search volume at

time point t in the i-th location of the j-th keyword. Our overall aim

is to realize the long-term prediction of a tensor X while adapting

to the latest tendencies.We de�neXc = {xt i j }
tc ,dl ,dk
t,i, j=tp,1,1

as the par-

tial tensor ofX, whose length is denoted by lc , i.e., tp = tc−lc . That

is, lc denotes the data duration that our method retains. Similarly,

let Xf = {xt i j }
te ,dl ,dk
t,i, j=ts ,1,1

denote a partial tensor from ts = tc + ls

to te = ts + le . Here, we de�ne ls and le as the time points that

we forecast and a regular time interval for reports, respectively.

Finally, we formally de�ne our problem as follows.

Problem 1 (ls -step ahead forecasting). Given: a data stream

Xc = {xt i j }
tc ,dl ,dk
t,i, j=tp,1,1

, where, tc is the current time point and tp =

tc −lc ; Forecast: ls -steps ahead future valuesX
f
= {xt i j }

te ,dl ,dk
t,i, j=ts ,1,1

where ts = tc + ls and te = ts + le .

3.2 CubeCast

To capture all the components outlined in the introduction, we

present a full model, namely CubeCast, which can model latent

dynamic patterns underlying tensor streams. So, how can we build

our model so that it summarizes tensor streams in terms of their
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Table 2: Symbols and de�nitions.

Symbol De�nition
dk , dl Number of keywords and locations
tc Current time point

X Tensor stream, i.e., X ∈ Rtc ×dl ×dk

Xts :te The partial tensor of X from time point ts to te
X: ,i Time series for the i-th country, i.e., X: ,i ∈ R

tc ×dk

kz, kv Number of latent states for base trends and seasonality

Z Latent variables for base trends, i.e., Z = {z1, . . . , zt }, zi ∈ R
kz

V Latent variables for seasonality, i.e., V = {v1, . . . , vt }, vi ∈ R
kv

A, B Non-linear dynamical system, i.e., A ∈Rk×k , B ∈Rk×k×k , k =kz+kv
W Observation matrix set for base trends, i.e.,W = {W1, . . . , Wm }

U Observation matrix set for seasonality, i.e., U = {U1, . . . , Um }

p Period of seasonality

S Latent seasonal components, i.e., S ∈ Rp×kv

E Estimated variables, i.e., E ∈ Rtc ×dl ×dk

m Number of local groups in a regime
n Number of regimes
θ Regime parameter set, i.e., θ = {A, B,W, U }

Θ Full parameter set, i.e., Θ = {S, θ1, . . . , θn }
R Regime assignment set, i.e., R = {r1, . . . , rn }

important components? Speci�cally, our model should have the

following three capabilities:

• Non-linear latent dynamics: Our model adopts a non-

linear dynamical system to capture complex dynamics in

time series.

• Seasonality: We extend the non-linear dynamical system

to handle seasonality that can also evolve over time.

• Co-evolving patterns in tensor streams: Finally, we pro-

pose an adaptive model that can describe both temporal and

locational di�erences in tensor streams.

3.2.1 Latent non-linear dynamics in a single location. We �rst fo-

cus on the simplest case, where we have only a single dynamical

pattern given a d-dimensional time series, such as search volumes

for a single country. In our basic model, we assume that time series

have two types of latent activities:

• zt : kz -dimensional latent activities at time point t .

• et : d-dimensional actual activities observed at time point t .

That is, we can only observe the actual event et , while zt is an

unobservable vector that describes non-linear dynamics evolving

over time. The temporal dependency of these activities can be de-

scribed with the following equations.

zt+1 = Azt + Bzt ⊗ zt ,

et =Wzt , (1)

where ⊗ shows the outer product for two vectors. A ∈ Rkz×kz

and B ∈ Rkz×kz×kz describe linear/non-linear dynamical activi-

ties, respectively. W ∈ Rd×kz shows the observation projection

with which to obtain the estimated event et from the latent activ-

ity zt . Note that we omitted the bias terms of each equation for

clarity.

3.2.2 With latent seasonal dynamics. Next, we consider our sec-

ond goal, namely, modeling seasonal/cyclic patterns in time series

by extending our basic model, Equation (1). More speci�cally, we

want to de�ne another latent space for seasonality that can interact

with linear/non-linear activities over time. For example, it would

allow us to represent intensifying seasonal patterns in conjunction

with latent trends. To this end, we additionally assume two types

of latent activities:

• vt : latent seasonal intensity at time point t , i.e., vt ∈ R
kv .

• S: latent seasonality, i.e., S ∈ Rp×kv .

Here, kv shows the number of dimensions of latent spaces for sea-

sonality, and p is a seasonal period. Consequently, Equation (1) is

rede�ned as follows.

[

zt+1

vt+1

]

= A

[

zt

vt

]

+ B

[

zt

vt

]

⊗

[

zt

vt

]

,

et =Wzt + U(vt ◦ St mod p ), (2)

where ◦ shows the element-wise product of two vectors. The terms,

A and B are extended to A ∈ Rk×k and B ∈ Rk×k×k , respectively,

where k = kz + kv . Estimated vectors et are obtained with a pro-

jection matrix U ∈ Rd×kv for seasonal latent activities, vv and S,

as well as W ∈ Rd×kz for latent trends, zt . Once we have the ini-

tial states z0 and v0, the following latent states can be recursively

generated using a single common dynamical system, which allows

us to extract the latent interaction between trends and seasonality.

3.2.3 Full model with multiple locations. Our �nal goal is to an-

swer themost crucial question, namely, how canwe describe regime

shifts over time in a large tensor stream, where we assume that

there are multiple distinct activities in terms of locations. We thus

enhance our non-linear dynamical system, Equation (2), so that

it can identify both time-changing and location-speci�c patterns.

Here, we assume that we have a 3rd-order tensor X. We speci�-

cally want to divide the tensor along the 2nd mode, i.e., dl loca-

tions, into a set of m local groups (m < dl ) in order to capture

location-speci�c activities. That is, dynamical patterns at the i-th

location can be described by one of the sets of observation matri-

ces Wi and Ui where i ∈ {1, . . . ,m}, while sharing a single latent

space given by A and B in Equation (2). This causes similar time

series to share similar latent non-linear factors. Let E ∈ Rtc×dl×dk

be an estimated tensor of X ∈ Rtc×dl×dk . If an observation vector

xt i ∈ X for the i-th location at time point t is modeled using the j-

th observation matrices, the estimated vector et i ∈ E is described

as follows.

[

zt+1

vt+1

]

= A

[

zt

vt

]

+ B

[

zt

vt

]

⊗

[

zt

vt

]

,

et i =Wj zt + Uj (vt ◦ St mod p ),

where i = 1, . . . ,dl and j = 1, . . . ,m. (3)

De�nition 3.1 (Single regime parameter set). Let θ be the parame-

ter set of a single non-linear dynamical system, namely θ = {A,B,

W,U}, whereW and U are sets of observation matrices for m

local groups, i.e.,W = {W1, . . . ,Wm } andU = {U1, . . . ,Um }.

Furthermore, we want to detect the regime transitions between

distinct latent dynamics. Letn denote the proper number of regimes

up to the current time point. Then, a tensor X is described using

a set of n regimes, i.e., {θ1, . . . ,θn }. Consequently, a full model set

for a tensor stream is de�ned as follows.
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Figure 3: Graphical representation of CubeCast: Given a

current tensor Xc , (a) it identi�es a regime θ while captur-

ing seasonality with S. (b) It generates latent states Z and

V. (c) It reports ls -steps ahead values Ei at the i-th location

with projection matrices Wj and Uj , which capture the j-th

location-speci�c pattern.

De�nition 3.2 (Full parameter set). Let Θ be a full parameter set,

namely, Θ = {θ1, . . . ,θn , S}, that describes multiple non-linear pat-

terns with seasonality.

The complete graphicalmodel of CubeCast is shown in Figure 3.

Our model uses a di�erent regime θ ∈ Θ that depends on a time-

varying pattern. Thus, we also want to determine the assignments

of regimes as well as those of their inner local groups.

De�nition 3.3 (Regime assignment set). Let R be a full regime

assignment set for Θ, namely, R = {r1, . . . , rn }, where ri = {r1,

. . . , r j , . . . , rdl } is a set of dl integers for the i-th regime θi , and

thus r j ∈ {1, . . . ,mi } is the local group index to which the j-th

country belongs.

Example 3.4. Assume that we have a tensor X ∈ R6×5×10 con-

sisting of six time points, �ve locations, ten keywords andwith two

regimes θ1 and θ2, where r1 = {1, 3, 3, 1, 2} and r2 = {1, 1, 2, 2, 2}.

If the algorithm assigns each time point as θ1→ θ1→ θ2→ θ2→

θ2 → θ1, then the tensor X is divided into X1:2, X3:5, X6 along

the time axis. X1:2 and X6 are also divided into three local groups,

namely, X1:2,[1,4], X1:2,[5], X1:2,[2,3] and X6,[1,4], X6,[5], X6,[2,3], re-

spectively, based on r1. Similarly,X3:5 is divided intoX3:5,[1:2], and

X3:5,[3:5] based on r2. Note that S is used to represent seasonality

for all these divided tensors.

4 OPTIMIZATION ALGORITHMS

In this section, we present our optimization algorithms for the real-

time forecasting of co-evolving tensor streams.

Thus far, we have proposed amodel based on non-linear dynam-

ical systems. To forecast future events e�ectively and accurately

with the model, we still have to address two problems, namely,

(a) the real-time forecasting of future events while generating and

switching regimes adaptively and (b) the automated mining and

estimation of multiple non-linear dynamics. Concerning the �rst

Algorithm 1 CubeCast (Xc ,Θ,R )

Input: (a) Current tensor Xc

(b) Full parameter set Θ
(c) Regime assignment set R

Output: (a) ls -steps-ahead future values Ef

(b) Updated full parameter set Θ′

(c) Updated regime assignment set R′

1: /* (I) Estimate a new regime for given data */
2: {θ, r} ←RegimeEstimation (Xc , S); // S ∈ Θ
3: /* (II) Update model set and detect current dynamics */
4: {Θ′, R′ } ←RegimeCompression (Xc , Θ, R, θ, r);
5: /* (III) Generate future values using a current regime */
6: {θ, r} ← arg min

θ ′∈Θ′,r′∈R′
‖Xc − f (θ ′, r′) ‖ // f ( ·, ·): Equation (3)

7: Ef ← f (θ, r); // Ef = {et i j }
te ,dl ,dk
t,i, j=ts ,1,1

,

8: return {Ef , Θ′, R′ };

goal (a), we need an e�ective way to incrementally manage the en-

tire model structure Θ so that it can detect regime switching to an-

other known/unknown regime. Moreover, for the second goal (b)

we want a criterion with which to determine a well-compressed

model that can capture the underlying dynamics of data without

any human intervention.We introduce a streaming algorithm,Cube-

Cast, which accomplishes the above goals. Algorithm 1 shows the

overall procedure of CubeCast. The basic idea of the algorithm is

the tensor encoding scheme we propose. It can update all the com-

ponents in a model set Θ while processing the current tensor Xc .

More speci�cally, the algorithm consists of:

(1) RegimeEstimation: Estimate a non-linear dynamical sys-

tem from scratch, namely, θ given a tensor Xc . It also splits

the tensor by arranging regime assignment r, and adds sets

of observation matrices inW andU for θ .

(2) RegimeCompression: Update full parameter setΘ and regime

assignment set R with current Xc and newly estimated θ

and r for Xc . In this step, the algorithm decides whether or

not to employ new regime θ and selects an optimal regime

for Xc . After updating R, it also updates seasonality S.

(3) Finally, it generates an ls -steps future event tensor Ef =

{et i j }
te ,dl ,dk
t,i, j=ts ,1,1

according to Equation (3) with themost suit-

able regime θ and regime assignment r for Xc , which are

selected by RegimeCompression.

4.1 Automated tensor summarization

Here, we describe our objective function with respect to the mini-

mum description length (MDL) principle to �nd the optimal model

set Θ automatically. The MDL principle enables us to determine

the nature of a good summarization by minimizing the sum of the

model description cost and data encoding cost as follows.

Θ = arg min
Θ′

< Θ′ > + < X|Θ′ >, (4)

where < Θ′ > shows the cost of describing Θ′, and < X|Θ′ >

represents the cost of describing the data X given the model Θ′.

In short, it follows the assumption that the more we can compress

the data, the more we can learn about its underlying patterns. We

thus propose two costs for our model.

4.1.1 Model cost. The class of the model parameter set we should

search for is parameterized by the number of latent states for trends
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and seasonality as well as the number of regimes. Once we have

these numbers, we calculate the description complexity of the en-

tire model with the following terms:

• The dimensionality of a tensor:

< tc >= log∗ (tc )
1, < dl >= log∗ (dl ), < dk >= log∗ (dk ).

• The dimensionality of latent components:

< kz >= log∗ (kz ), < kv >= log∗ (kv ), < p >= log∗ (p).

• Seasonality:

< S >= |S| · (log(p) + log(kv ) + cF ) + log
∗ ( |S|).

• Single regime parameter set:

< θ >=< kz > + < A > + < B > + <W > + < U >.

Here, | · | describes the number of non-zero elements and cF de-

notes the �oating point cost2. The model description cost of each

component in < θ > is de�ned as follows.

< A > = |A| · (2 · log(k ) + cF ) + log
∗ ( |A|),

< B > = |B| · (3 · log(k ) + cF ) + log
∗ ( |B|),

<W > = Σmi=1 |Wi | · (log(dk ) + log(kz ) + cF ) + log
∗ ( |Wi |),

< U > = Σmi=1 |Ui | · (log(dk ) + log(kv ) + cF ) + log
∗ ( |Ui |).

4.1.2 Data cost. We can encode the dataX usingΘ based on Hu�-

man coding [23]. The coding scheme assigns a number of bits to

each value inX, which is the negative log-likelihood under aGauss-

ian distribution with mean µ and variance σ 2, i.e.,

< X|Θ >=

tc ,dk ,dl∑

t,i, j=1

− log2 pµ,σ (xt i j − et i j ), (5)

where, et i j ∈ E shows the reconstruction values of xt i j ∈ X using

Equation (3). Finally, the total encoding cost < X;Θ > is written

as follows.

< X;Θ > =< Θ > + < X|Θ >

=< tc > + < dl > + < dk > + < p >

+ < kv > + < S > +

n∑

i=1

< θi > + < X|Θ > . (6)

4.2 RegimeEstimation

It is di�cult to �nd the global optimal solution of Equation (6) due

to interdependent components in the model: (a) latent dynamical

systemsA andB, (b) observationmatrices inW andU and (c) sea-

sonal patterns, S. Therefore, we �rst aim to �nd the local optima for

the components (a) and (b) using a greedy approach, more speci�-

cally, we propose RegimeEstimation to minimize Equation (6) for

a tensor Xc .

Algorithm 2 shows RegimeEstimation in detail: it �rst regards

current tensor Xc as a single regime; it searches for discrete lo-

cal patterns in Xc by grouping similar dimensions in the target

mode of Xc . Our �rst goal is to estimate the optimal parameters

θ = {A,B,W,U} to minimize the total cost, < Xc ; S,θ , r >, while

keeping seasonality S �xed. The �rst assumption is that there is a

single local activity group (i.e.,m = 1), i.e.,W = {W}, U = {U},

and all elements ri ∈ r, where i = 1, . . . ,dl , are set at 1. To estimate

1Here, log∗ is the universal code length for integers.
2We use cF = 32 bits.

Algorithm 2 RegimeEstimation (Xc , S)

Input: Current tensor Xc and seasonality S
Output: Regime parameter set θ and regime assignment r
1: W = ϕ ; U = ϕ ; r = {ri = 1 |i = 1, . . . , dl };
2: W∗

= ϕ ; U∗ = ϕ ; // candidate observation matrix set
3: /* Estimate a regime with a single local activity */

4: {A, B, W, U} ← arg min
θ ′={A′,B′,W′,U′}

< Xc ; S, θ ′, r >;

5: PushW intoW∗ ; Push U into U∗ ;
6: /* Estimate local activities */
7: whileW∗ and U∗ are not empty do
8: Pop an entryW0 fromW

∗ ; Pop an entry U0 from U
∗ ;

9: θ ← {A, B,WF , UF }; //WF =W ∪W∗ ∪ {W0 }

10: Initialize r∗ ; InitializeW1, W2, U1, U2 ;
11: θ ∗ ← {A∗, B∗,W∗

F , U
∗
F }; // A

∗
= A, B∗ = B

12: //W∗
F
=W ∪W∗ ∪ {W1, W2 }, U

∗
F
= U ∪ U∗ ∪ {U1, U2 }

13: while < Xc ; S, θ ∗, r∗ > is improved do
14: Estimate r∗ ;
15: EstimateW1, W2, U1, U2 ;
16: Estimate A∗, B∗ ;
17: end while
18: if < Xc ; S, θ ∗, r∗ > is less than < Xc ; S, θ, r > then
19: Push {W1, W2 } intoW

∗ ; Push {U1, U2 } into U
∗ ;

20: A← A
∗ ; B ← B∗ ; r← r

∗

21: else
22: PushW0 intoW ; Push U0 into U ;
23: end if
24: end while
25: return {θ , r }; // θ = {A, B,W, U }

the number of non-linear activities kz , the algorithm increases the

number from 1, while the total cost is decreasing. For each estima-

tion with kz , it sets B = 0 and optimizes only linear parameters

{A,W,U} ∈ θ using the expectation-maximization (EM) algorithm.

After obtaining the best kz , it employs the Levenberg-Marquardt

(LM) algorithm [21] to optimize the non-linear parameters in B3.

Note that the initial states z0 and v0 are also estimated with θ .

Next, the problem is how to �nd di�erences with respect to

one of the aspects of a tensor. To avoid considering all candidate

combinations of rich attributes, e.g., locations, we propose an ef-

�cient stack-based algorithm. LetW∗ and U∗ be stacks contain-

ing candidate local activities that could be further divided. While

the stacks are not empty, the algorithm pops entries {W0,U0}, and

then tries to divide the local group into two by generating {W1,U1}

and {W2,U2}. After initializing the �rst local activity assignments

r
∗ for the two candidate local groups, it iterates three procedures

to estimate a new parameter set θ∗: (a) minimize reconstruction

errors only by updating {W1,W2,U1,U2} ∈ θ∗; (b) minimize re-

construction errors only by updating {A∗,B∗} ∈ θ∗ and (c) rear-

range the regime assignments in r
∗ only for the two candidate

local groups based on the newly estimated parameters θ∗. The

new assignment r∗i ∈ r
∗ of the i-th country in the divided local

group is set to the local group index that minimizes the total cost,

< Xc: ,i |A,B,Wj ,Uj >, where j ∈ {1, 2}. This alternative procedure

makes the latent dynamical system more sophisticated in relation

to divided activities. Note that it uses all observation matricesWF

andUF in every iteration since updatingA andB a�ects themodel

quality for the entire local groups. Finally, if the coding cost with

newly estimated components θ∗ and r
∗ is less than the cost with

undivided components θ and r, the algorithm pushes the candi-

date pairs into the stacksW∗ and U∗ for subsequent iterations.

3Note that the non-linear activity tensor B should be sparse to eliminate the complex-
ity of the system, thus we only use the diagonal elements biii ∈ B, where i ∈ [1, k]
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Algorithm 3 RegimeCompression (Xc ,Θ,R,θ , r)

Input: (a) Current tensor Xc

(b) Full parameter set Θ and regime assignment set R
(c) Candidate regime θ and regime assignment r

Output: Updated model set Θ∗ and regime assignment set R∗

1: /* Search an optimal regime within Θ */

2: {θ ∗, r∗ } ← arg min
θ ′∈Θ,r′∈R

< Xc ; S, θ ′, r′ >;

3: if < Xc ; S, θ, r > is less than < Xc ; S, θ ∗, r∗ > then
4: Θ∗ ← Θ ∪ θ ; R∗ ← R ∪ r;
5: θ ∗ ← θ ; r∗ ← r; // Replace an optimal regime with a new regime
6: else
7: Θ∗ ← Θ; R∗ ← R;
8: end if
9: while < Xc ; S, θ ∗, r∗ > is improved do
10: Estimate θ ∗ ; // θ ∗ ∈ Θ∗

11: Estimate S; // S ∈ Θ∗

12: end while
13: return {Θ∗, R∗ };

Otherwise, it employs W0 and U0 as an optimal local group (i.e.,

m =m + 1).

4.3 RegimeCompression

Here, we answer the �nal question, namely, how can we realize

the good compression of tensor streams while detecting regime

shifts? As described in subsection 1.1, real-world applications com-

prise several discrete phases. We propose RegimeCompression,

that makes e�ective and e�cient updating possible so that the ap-

proach can detect upcoming dynamical patterns. The main idea

is to employ/update regimes when they reduce the total cost of

Xc . The overall RegimeCompression algorithm is shown as Al-

gorithm 3. Given a current tensor Xc , it �nds an optimal regime

based on a previous model set {Θ,R} and a candidate regime {θ , r}

estimated using RegimeEstimation. The goal is to continue mini-

mizing the total cost of Xc when given a model set Θ. First, the al-

gorithm searches for an optimal regime θ∗ ∈ Θ and r∗ ∈ R, which

minimizes the coding cost < Xc |S,θ∗, r∗ >. If a newly estimated θ

gives us a lower total cost for Xc than θ∗, it adds θ into Θ, which

indicates that θ represents a good summarization for an additional

pattern. Otherwise, it describes Xc with θ∗. After the algorithm

updates the regime shift dynamics R, it updates seasonality S and

current regime θ∗ using the LM algorithm. More speci�cally, it al-

ternately updates one component with the other component �xed.

It can �nd a kv seasonal component S that minimizes the recon-

struction error Xc .

Before we start online forecasting, we need to initialize the num-

ber of seasonal components kv and seasonality S. Therefore, we es-

timate the two components based on independent component anal-

ysis (ICA). Speci�cally, we �rst estimate a regime θ with RegimeEs-

timation, where kv = 0 and S = 0. Then, we vary kv = 1, 2, 3, . . . ,

and determine an appropriate number so as to minimize the total

cost < X; S,θ , r >. For each given kv , we apply ICA to the ma-

trix X ∈ Rp×d , which is reshaped from X for training, and obtain

independent components as S.

Lemma 4.1. The computation time of CubeCast isO (n dldk ) per

time point, where n is the number of regimes.

Proof. Please see Appendix A. �

Table 3: Dataset description.

ID Dataset Query
#1 Apparel zara, uniqlo, h&m, gap, primark
#2 Chatapps facebook, LINE, slack, snapchat, twitter,

telegram, viber, whatsapp
#3 Hobby soccer, baseball, basketball, running, yoga, crafts
#4 LinuxOS debian, ubuntu, centos, redhat, fedora, opensuse,

steamos, raspbian, kubuntu
#5 PythonLib numpy, scipy, sklearn, matplotlib, plotly, tensor�ow
#6 Shoes booties, �ats, heels, loafers, pumps, sandals, sneakers

5 EXPERIMENTS

In this section, we describe the performance of CubeCast on real

datasets. The experiments were designed to answer the following

questions:

• Q1. E�ectiveness: How well does our method extract latent

dynamical patterns?

• Q2. Accuracy: How accurately does our method predict fu-

ture values?

• Q3. Scalability: How does our method scale in terms of com-

putational time?

Our experiments were conducted on an Intel XeonW-2123 3.6GHz

quad core CPU with 128GB of memory and running Linux.

Datasets. We used the 6 real event streams on GoogleTrends4,

which contained the weekly search volumes for keywords from

January 1, 2004 to December 31, 2018 (totally 14 years) from 236

countries. The queries of our datasets are described in Table 3. Due

to a signi�cant amount of missing data, we selected the top 50

countries in order of their GDP scores5. We normalized the val-

ues so that each sequence had the same mean and variance (i.e.,

z-normalization).

Baselines. We used the following baselines, which are state-of-

the-art algorithms for modeling and forecasting time series:

• RegimeCast [15] – Real-time forecastingmethodwithmulti-

ple discrete non-linear dynamical systems. We set the num-

ber of latent states k = 4, the model hierarchy h = 2, and

the model generation threshold ϵ = 0.5 · ‖Xc ‖.

• SARIMA [5] – A state space method for capturing seasonal

elements of time series. We choose the optimal number of

parameters for the model from {1, 2, 4, 8} based on AIC.

• MLDS [24] – Multilinear dynamical system (MLDS), which

learns the multilinear projection of each dimension of a se-

quence of latent tensors. We varied the ranks of the latent

tensors {2, 4} and {4, 8}.

• LSTM/GRU[1] – RNN-basedmodels for time series.We stacked

a 2-layer LSTM/GRU to encode and decode/predict parts,

each of which has 50 units. We also applied a dropout rate

of 0.5 to the connection of the output layer. In their learning

steps, we used Adam optimization [11] and early stopping.

4 https://trends.google.com/trends/
5https://www.imf.org/external/index.htm

https://trends.google.com/trends/
https://www.imf.org/external/index.htm
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Figure 4: Fitting results of CubeCast for �ve apparel companies on GoogleTrends (here, we show the results for nine coun-

tries).CubeCast incrementally and automatically identi�es sudden changes in dynamical patterns including the latent trends,

seasonality and structure of groups of similar countries.

5.1 Q1. E�ectiveness

We�rst describe how successfullyCubeCast found dynamical pat-

terns and their structural changes over time on co-evolving ten-

sor streams. Some of the results have already been presented in

section 1 (i.e., Figure 1 and Figure 2).

Figure 4 shows the additional �tting results of CubeCast for

nine countries in the (#1) Apparel tensor stream. The original ac-

tivities are shown as faint lines, and our estimated volumes are

shown as solid lines. The results were obtained when our method

retained a tensor Xc of length 104 (i.e., two years) at every 13-

th time point (i.e., a quarter of a year). We also assume that our

datasets have yearly seasonality, so we set p = 52 and initialized

seasonal components with tensor streams from 2004 to 2006.

Overall, our proposed model successfully captured latent dy-

namical patterns for multiple countries and keywords. As shown

in Figure 4, the detected change points are near the spots where the

trends are suddenly changed. For example, In 2009, Germany had

become the biggest market for H&M, and thus its search volume is

increasing at that time. This trend is captured in September 2008.

In August 2012, we can observe increasing trends in China and

countries in Europe. Recently, all the countries have been main-

taining their seasonality without eather the growth or decay of

trends. Since our method compresses an input tensor into a com-

pact model, it can detect comprehensive pattern changes in web

activity tensor streams.

5.2 Q2. Accuracy

Next, we evaluate the forecasting accuracy of CubeCast compared

with baselines. Figure 5 shows the average root mean square error

(RMSE) between the original tensor and the 52-step (i.e., a year)

ahead estimated values using every current tensor Xc of length

104. A lower value indicates a better forecasting accuracy.

Unsurprisingly, our method outperforms the other time series

forecastingmethods for all datasets because it canmodel non-linear

dynamics and seasonality simultaneously. RegimeCast is capable

of handling multiple discrete non-linear dynamics but misses sea-

sonal patterns. Thus, it cannot forecast future values very well on

our online web activity datasets. Note that linear models are un-

suitable for long-term (i.e., multiple steps ahead) forecasting.

5.3 Q3. Scalability

Finally, we evaluate the computational time needed by CubeCast

for large tensor time series by comparison with its competitors.

Figure 6 shows the average response time for each dataset. As

we expected, our method achieves a great improvement in terms of

computational time. The RNN-based models require a signi�cant

amount of learning time, while ourmethod can identify the current

regime including several groups of countries and forecast future

events quickly and continuously. Since RegimeCast and SARIMA

are incapable of handling tensor data, they need to process a tensor

as a large matrix, which incurs high computational costs. Overall,

our proposed method is very e�cient for the real-time/long-term

forecasting of tensor series.

We also evaluated the scalability of CubeCast in more detail.

Figure 7 shows the average wall clock time of RegimeEstimation

when the tensor size is varied, i.e., the duration and the number of

countries on six GoogleTrends datasets. Thanks to our proposed

stack-based country-speci�c pattern identi�cation procedure, the

complexity of RegimeEstimation scales linearly with both the du-

ration and the number of countries. Consequently, our method has

a desirable property in that it can forecast large tensor streams

based on multi-aspect dynamic pattern mining.

6 CONCLUSION

In this paper, we proposed an e�ective and e�cient forecasting

method, namely CubeCast, for large time-evolving tensor series.

Our method can recognize basic trends and seasonality in input ob-

servations by extracting their latent non-linear dynamical systems.
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Figure 5: Average forecasting accuracy of CubeCast: our

method is consistently superior to its competitors for all

datasets (lower is better).
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Figure 7: Average wall clock time vs. tensor stream size, i.e.,

duration (tc ) and number of countries (dl ).CubeCast scales

linearly with respect to the time and target mode for divi-

sion into several groups.

We showed that our method has the following advantages over its

competitors for time series forecasting using real Google search

volume datasets. It is E�ective: it e�ectively captures complex non-

linear dynamics for tensor time series when forecasting long-term

future values. It is Automatic: it automatically recognizes all the

components in regimes and their temporal/structural innovations,

while requiring no prior knowledge of the data. It is Scalable: the

computation time of CubeCast is independent of the time series

length.
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Figure 8: Fitting results of CubeCast for the number of searches of seven shoe type keywords in nine countries. CubeCast

detects time-evolving dynamics including various patterns, trends and seasonalities for each country in a complex tensor

stream. We emphasize that our algorithm does not need any prior training or knowledge regarding the keywords.

A STREAMING ALGORITHM

Proof of Lemma 4.1. For each time tick, CubeCast performs ma-

trix operations to reconstruct a given tensor Xc ∈ Rlc×dl×dk with

Θ. Fordl dimensions, it needsO (lcdkkz ) for trends andO (lcdkkv +

pkv ) for seasonality. RegimeEstimation iterates splitting a candi-

date regime into two local groups, which needsO (#iter ·dl ·2 lcdk ).

In RegimeCompression, searching for an optimal regime from n

regimes in Θ requires O (ndldk ). Since #iter , lc and the numbers

of hidden components kz ,kv are negligibly small constant values,

the total computation time of CubeCast is O (ndldk ). �

B EXPERIMENTS

Here we show the additional results relating to the e�ectiveness

and scalability of our method.

B.1 E�ectiveness

We examined the modeling power of CubeCast in terms of captur-

ing important patterns, trends and seasonalities of each country in

a given tensor stream. Figure 8 shows our real-time �tting results

for the search volumes of seven keywords as regards shoe types.

As an example, see the top left of Figure 8 (United States), the

dataset has various fashion trends and seasonalities, such as the

long-term decrease in the popularity of pumps, the cyclic increase

in the popularity of sandals and the decrease in the popularity of

booties in the summer. Moreover, these tensor stream characteris-

tics vary by country. Compared with the sequence for the United

States, the popularity of pumps is increasing in Germany as seen

in the center left of Figure 8. In India, shown in the bottom left of

Figure 8, the data have onlyweak seasonalities because of the coun-

try’s climate and culture. Ourmethod automatically and e�ectively

identi�esmultiple trends and seasonalities aswell as location-speci�c

features, and then models all behavior in a streaming fashion.

Aug2009 Dec2010 May2012 Sep2013 Feb2015 Jun2016

Time (per week)

40

60

80

100

120

140

160

180

W
a
ll 

c
lo

c
k
 t
im

e
 (

s
e
c
)

#1: Apparel #2: ChatApps #3: Hobby #4: LinuxOS #5: PythonLib #6: Shoes

Figure 9: Wall clock time vs. tensor stream length tc . For

each dataset, CubeCast can identify the current dynamics

and forecast future values with constant time.

B.2 Scalability

Next, we present additional results regarding the time consumed

by CubeCast. Figure 9 shows the computation time of CubeCast

at each time interval for reports. As described in Lemma 4.1, the

time complexity scales linearly in terms of the number of regimes

in the current model set Θ and the size of current tensor Xc . The

algorithm works e�ciently even if it splits a given tensor into sev-

eral groups of countries in RegimeEstimation. We also note that

our algorithm �nally reported the number of regimes n for each

dataset as follows. (#1) n = 6, (#2) n = 30, (#3) n = 8, (#4) n = 19,

(#5) n = 26, (#6) n = 14. As shown in this �gure, the actual run-

ning time of CubeCast is dominated by the time for RegimeEs-

timation, not for searching for an optimal regime from among n

regimes in a model set Θ. Our algorithm can perform tensor fore-

casting continuously, the time required remains almost constant.
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